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A COMPUTER SEARCH OF RANK-2 LATTICE RULES
FOR MULTIDIMENSIONAL QUADRATURE

IAN H. SLOAN AND LINDA WALSH

ABSTRACT. For certain lattice rules of ‘rank 2’ it has been shown, in a recent
paper, that a unique representation exists in a form suitable for computer eval-
uation. The present paper describes computer searches of such rules, reports
results and identifies rules that appear promising for the numerical evaluation
of practical multidimensional integrals.

1. INTRODUCTION

There is a continuing effort to find nonrandom sets of points in the multidi-
mensional unit cube that are good abscissas for equal-weight multiple integra-
tion rules. This effort is roughly divided into two parts: the quasi-Monte Carlo
method and the lattice method. Both methods aim to achieve faster convergence
than the standard Monte Carlo method. Whereas the classical Monte Carlo
method converges with order 1/v/N, where N is the number of points, the
quasi-Monte Carlo method can achieve an order (log N)’/N for some y > 0;
a full description of the quasi-Monte Carlo method can be found in [9].

Lattice methods aim to achieve still faster rates of convergence, for integrands
that are suitably well behaved. The study of lattice methods was initiated by
Korobov [3] with the number-theoretic good lattice method. See also [9, 1] and
references therein. Recently, a much wider class of lattice rules have been de-
fined for the integration of smooth functions over the unit s-dimensional cube
[10, 11]. In essence, a lattice rule is a rule whose abscissas are taken from a
geometrical ‘lattice’ which includes the integer vectors as a sublattice. Subse-
quent work by Sloan and Lyness [12] has established a classification of lattice
rules, which introduces the concept of ‘rank’. The rank takes the value 1 for
the number-theoretic rules of Korobov, and the value s for the s-dimensional
trapezoidal rule, and more generally for any lattice rule that is an n’ copy of
another rule.

The purpose of this paper is to consider in detail certain rules of rank 2.
Some preliminary work has been done by Newman and Lyness [8] in a computer
study of certain rank-2 and rank-3 rules in three dimensions. We now carry out
computer searches in higher dimensions, and find the ‘best’ such rules according
to a criterion introduced for number-theoretic rules by Korobov [4]. At the same
time we carry out searches of rank-1 (i.e., number-theoretic) rules, so that the
relative performance of the new rules can be assessed.
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In §2 we first restate the main results of [12] for lattice rules, and of [5]
for the particular case of rules of rank 2. We then show how to eliminate
from the computer search rules that differ only by uninteresting permutations
or reflections. In §3 the full details of our computer implementation of the
searching procedures are given. Section 4 contains numerical results, and §5
discusses the implications of these results. A preliminary report of this work
has appeared in [13].

2. THEORY

2.1. Lattice rules for computer evaluation. Let 7/ denote the integral of f
over the unit s-dimensional cube C° =[0, 1]°,

(1 If = fx)dx.
C

We consider only functions f which are continuous on C°, and moreover have
a continuous 1-periodic extension with respect to each variable x yeens X
that is, f is assumed to have the same values at points on opposite faces of the

unit cube,

(2) S g = FX) o, i=1,...,s.

We may then define f, the periodic extension of [, by
fx)=f({x}), xeFR,

where {x} is the s-vector whose ith component is the fractional part {x(') } =
x" — x"] of x"'. The extension to functions without the property (2) is
discussed in [12]. However, for practical applications we recommend that 7
be at least continuous, and preferably have a continuous first derivative. A
preliminary coordinate transformation is usually needed to force f to have the
desired property.

The general definition of a lattice rule, as given in [10, 11], is

N
1
(3) 0f =5 Y fx),
j=1
where x,, ..., x, are all the points of an infinite lattice that lie in the half-

open unit cube. For our present purposes it is more convenient to begin with a
representation established in [12]: there, it is shown that every lattice rule can
be represented as a nonrepetitive expression of the form

n n
1 1 m _ ) Z ) Z
(4) Qf = 2:"'§:f<.]|—l_+'”+]m m)’
n,---n n n
! m jI:l jm:l ! m
where z , ...,z are integer vectors, and

m

(5) n,+ldividesn,fori=1,...,m—1, n,>1.

Conversely, every expression of the form (4) and (5) is a lattice rule. A key
feature of nonrepetitive rules of this form is that the numbers m (the rank)
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and n, ..., n, (theinvariants) are uniquely determined. The simplest case is
that of the number-theoretic rules [3],

A p
(6) Qf=ﬁj;f(1ﬁ),

for which the rank is clearly 1, and the (sole) invariant is N, provided p and
N have no nontrivial common factor.

Though the form (4) is convenient for computer evaluation, we do not yet
have a satisfactory foundation for an efficient computer search, for two reasons:

(i) A rule of this form with no restrictionson z,, ..., z,, can be repetitive,
that is, there can be fewer than n ---n, distinct abscissas.
(ii) The vectors z, ..., z, are far from unique, the same rule often ap-

pearing in many different guises.

In order to find an easily computable representation that leads to an efficient
computer search procedure, we restrict attention to rules of rank 2.

2.2. Lattice rules of rank 2. We have established already that a lattice rule of
rank 2 can be written as a nonrepetitive expression of the form

1 nrono oz oz
(7) 0f =3 3T (e +0272)

jl:]jzzl

where n > 1 and r > 1, and the two invariants are written as nr and n to
satisfy (5). We shall assume throughout that n and r in (7) have no common
prime factor, i.e., that their greatest common divisor (n, r) equals 1. Under
this assumption the rank-2 rule can be rewritten in the form

_ 1 r n no_ z y y
(8) Of =33 3T (U +hir +h32)

J=1 k=1 ky=1

where z,y, and y, are integer vectors: for it may easily be verified that (8)
becomes equivalent to (7) if z=12z,, y, =z, and y, = z,. Conversely, it is
shown in [5] that every nonrepetitive expression of the form (8) (with n > 1
and (n, r) = 1) is a rank-2 rule, and hence is expressible in the form (7): for
example, we may choose in (7) z, = nz+ry,, z, =Yy,.

If the components of vectors in (8) are suitably restricted, then this represen-
tation becomes unique: specifically, it is shown in [5] that the representation
(8) is unique if z,y, and y, satisfy

TP NE)
(9) =1, [yzn yéz>]=[‘ 0],
and
(10) 0<z"<r, Osyj')<n, forj#1,2, i=1,...,s.

Further, (9) ensures that the expression (8) is nonrepetitive.
The representation (8) is a convenient starting point for our rank-2 searches.
It should be said, however, that not all rank-2 rules can be written in the form
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(8). In fact, it is shown in [5] that a rank-2 rule can be written in this way if and
only if its one- and two-dimensional projections onto the xV and xU , x@
subspaces have invariants nr and nr, n, respectively; in other words, if and
only if the leading one- and two-dimensional projections have as many abscissas
as possible (namely nr and nzr)—or in the language of [5], if and only if the
rule has ‘full principal projections’.

There is still a further point to consider before we begin our computer search,
namely that we would wish to eliminate from the list of rules to be searched any
repetitions of rules that differ from each other only by uninteresting geometrical
transformations.

2.3. The elimination of geometrically equivalent rules. = We shall say that two
rules are ‘geometrically equivalent’ if they differ only by a permutation of the
variables, or by a reflection in one or more mid-planes, or by a combination
of these. Since the search criterion to be described below does not distinguish
between geometrically equivalent rules, it is clearly wasteful to include two or
more geometrically equivalent rules in the list to be searched. We therefore
seek an effective strategy for the recognition and elimination of this kind of
redundancy.

The representation (8) is convenient for this purpose, as it allows the problem
of geometrical equivalence to be reduced to that of the simpler rank-2 rule, with
invariants n, n,

(11) 0= 37 (k4 k2).

g =1k,=1

Forif y,,y, and y|, y, generate two nonequivalent rules Of and Q'f, then
the corresponding rules Qf and Q'f given by (8) and (8'), where (8') is the
analogue of (8) with z,y,,y, replaced by z',y),y,, will also be nonequiv-
alent. On the other hand, if y ,y, and y'1 , y'2 generate equivalent rules é f

and é' [, then it will be sufficient to include only one of these pairs in the list
to be searched, provided we search over all allowed values of z in (8).

The strategy of using only the nonequivalent y, , y, pairs from (11) and then
searching over all allowed z vectors in (8) may not eliminate all geometrical
equivalences of Qf. For example, if n = 2, then (11) is symmetric under
reflection in every mid-plane. As a result, the replacement of P by r — z
in the formula (8) for Qf leads to a geometrically equivalent rule. In cases

such as this, where the rule (11) is symmetric in the mid-plane XV = % , it 1s

clearly sufficient to limit the component z% to the range 0 < 29 < [r/2]. It
is easy to find other situations in which the proposed strategy still leaves some
geometrically equivalent pairs, but beyond some point the effort of eliminating
them may not seem worthwhile.

The problem now reduces to the recognition of geometrical equivalences in
the nz-point rule (11), with the first two components of y,,y, fixed by (9).
In the present work a computational, rather than algebraic, method was em-
ployed for this purpose. The computational procedure is based on applying the
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rule (11), with the first two components of y,,y, fixed by (9) and the other
components running from 0 to n — 1, to the function

(12) f(x) = (Z h(xm)) ,
i=1

where
(13) h(x) = |x — 3l

As f is fully symmetric under permutations and reflections in mid-planes, two
geometrically equivalent rules will clearly give the same value of Qf; and we
believe (but cannot yet prove) that two nonequivalent rules will yield different
values. Thus we need retain in the list of y,, y, pairs only those that yield a

value of é f not previously encountered. Table 1 gives the surviving y,,y,
pairs for some small values of n and s.

TABLE 1
Geometrically nonequivalent y, , y, pairs
for some small values of n and s.

s n M ¥,
3 2 100 010
100 011
101 011
4 2 1000 0100
1000 0101
1001 0101
1000 0111
1001 0110
1001 0111
3 3 100 010
100 011
101 011
4 3 1000 0100
1000 0101
1001 0101
1000 0111
1001 0110
1001 0111
1011 0112

In practice, the above procedure was modified to avoid rounding error prob-
lems arising from the use of real arithmetic, by evaluating the related integer
quantity

(14) n*QF = i Zf(klyn—‘ +k2yn—2) ,

k=1 ky=1
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where F(x) = (0_, H(x""))*, and H(x) = |2nx—n|. The possibility of integer
overflow was ignored, so that the integers in (14) were actually calculated mod-
ulo some large number (on a Vax 11/750 computer), a procedure that seemed
safe enough in practice. Table 2 lists the number N, of surviving y,, y, pairs
for the cases » =2 and n =3 in 3 to 8 dimensions.

TABLE 2
The number of geometrically nonequivalent y, , y, pairs.

N
y
s n=2 n=3
3 3 3
4 6 7
5 10 12
6 16 20
7 23 30
8 32 44

2.4. The search criterion. A general discussion of possible criteria for assess-
ing lattice and other rules is given in [6]. In the present work we use a standard
criterion of Korobov and the number theorists (criterion (') of [6]), namely:
Jor a a fixed even positive integer (e.g., a = 2), minimize

(15) P,=0Qf -1f,=0f, -1,
where

(16) 7,0 =, (x")g,(x) -0, (),
and

a7) 8,00 =1 - (1P B,

Here B is the Bernoulli polynomial of degree o .

The motivation lies in the form of the error expression for a lattice rule: it
is shown in [11] that if the periodic extension f of the integrand in (1) has the
absolutely convergent Fourier series expansion

(18) 7x) =" am)e™™™™,

mez’

then the lattice rule (3) corresponding to the lattice L has the error
i
(19) of -1f= ) a(m),
melt
where L* is the ‘dual’ lattice,
L ={meZ :m-xeZv¥xel},

and the prime indicates that the term m = 0 is to be omitted from the sum.
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Since the particular function f, defined by (16) has the simple Fourier series

expansion
— 1 2nimex
fa X) = —— —a 5
( ) II;ZS (mlm2 ’ mS)
where
— { 1 ifm=0,
B lm| ifm#0,
it follows from (15) and (19) that
! 1
20 P = T —  — a °*
( ) “ mgL:‘L (mlmZHOms)

The interesting point is that P is the maximum value of |Qf—1If| over the set
of functions f whose Fourier coefficients satisfy |a(m)| < 1/(m, 7, --m )" :
for, with f in that set, (19) gives

1 ! —
0f —I1f1< Y lamm)| < > (mm,---m) " =P,
meLt meL*
with equality being achieved if f=f .

In essence, the point of using P as the criterion is that every lattice rule
finds the function f a difficult one to integrate, because the error expression
(20) for the error in Qf, involves no cancellation. As pointed out in [6], P,
may be a completely inappropriate measure for nonlattice rules, because many
such rules find f, trivially easy to integrate.

For the case of the rank-1 number-theoretic rules (6), it is known (see, for ex-
ample, [9]) that there exist a sequence of prime numbers N and corresponding
vectors p such that

(log N)“ﬂ(s)

N¢ ’
where c(s, a) and B(s) are independent of N . Such sequences are often called
‘good’ lattice rules.

The following very easy result establishes the same property for a sequence
of rank-2 rvles having fixed smaller invariant »n. Thus the judgement between
rank-1 and rank-2 rules cannot be based on the notion that rank-1 rules neces-
sarily have a better order of convergence—they do not.

(21) P <c(s,a)

Theorem. Given n > 1, s > 1 and o > 1, there exists a sequence of lattice
rules with rank 2 and invariants nr, n, with (n, r) =1, such that
(log N)ﬂﬂ(s)
Na bl
where N =n’r, and d(n, s, a) and B(s) are independent of N .

Proof. Corresponding to the rank-2 rule Qf in the form (8), there exists a
corresponding r-point rule of rank 1,

07 =137 (%)

(22) P, <d(n,s,a)
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Assume r is prime and r > n, implying (n, r) = 1. By the result (21) quoted
above, there exists a sequence of choices of r and z such that

A aBls)
P =0Qf -1If <cs, a)uo—g;.Z—.

Now the lattice L(Q) corresponding to the rule Q is clearly a subset of the
lattice L(Q) corresponding to the rule Q, from which it follows that L(Q)‘L C
L(Q)l . Hence, for any choice of y,,y, in (8),

! 1 ! 1 ~
Fo= 2 oy S 2 oy e

meL(Q)* = ! s meL(0)t |
1 af(s) 1 N af(s)
SC(S> )%Sd(r[,s,a)%,

where d(n, s, a) = n*"c(s, @). O

It may be remarked that the proof yields a poor value for the constant in
(22), compared to that in (21). However, the numerical calculations later in the
paper strongly suggest that this is merely an artifact of the proof, at least for
small values of ».

3. THE COMPUTER SEARCH

The object is to search over geometrically nonequivalent rank-2 rules with
invariants nr, n and (n, r) = 1, which have full principal projections. This is
achieved in practice by searching over all y, , y, pairs from the restricted list as
described in subsection 2.3, and a set of allowed z vectors satisfying (9), (10).
In each case we applied the criterion in subsection 2.4 to obtain the rules giving
the smallest P values. In practice we minimized P, and P separately, and
also performed comparable searches on rank-1 rules of the form (6), so that the
relative performances of rank-1 and rank-2 rules could be quantified.

The search procedure described in this work differs from previous searches
[1, 2, 7] in two main respects: first, that rank-2 rules are being searched for
the first time, and second (due to the ever increasing power and improving
architecture of computers) that search programs have been written specifically
to take advantage of the Cyber 205 vector capabilities. A full statement of the
search procedure now follows.

For the rank-2 quadrature rule in the form (8), the ingredients to be specified
are the dimension s, the positive integers n and r (with (n,r) = 1), the
pair of vectors y, ,y,, and the vector z. Given s and n, the pairs y,,y,
are chosen as in subsection 2.3 (some examples, for small s, being given in
Table 1). Recall that there are N, such pairs, with N, given in Table 2. In a
particular search we compute, for fixed s, n and r, the values of P, and P
for all y,,y, pairs, and for a set of z vectors as spemﬁed below. We retaln
from the search only the rules which minimize P, or P, (or both).

Since it is impossible in practice to search over all possible z vectors, we
set up, for given s and r, two separate search sets of z vectors, one with
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components of z chosen systematically, as below, and another (of equal size)
with components chosen at random. The first set consists of vectors of the
one-parameter (Korobov [4]) form

(23) z=(1,a,d",....,a"") (modr),

with 1 <a < r, or, for the special case n =2, 1 <a < r/2. The second set
consists of vectors of the form

z=R"Y, ..., RY),

with R" a random variable in the range 1 to r. Then, for n > 2, the total
number of z vectors in each of the search sets is (r — 1), and for n = 2 it
is (r —1)/2. The two sets of -z vectors (which we shall call ‘Korobov’ and
‘random’, respectively) were searched separately.

For comparison we also carried out searches of rank-1 rules with the same
total number of points (i.e., N = n2r) , and with p in (6) given either by

(24) p=(,a,d>,...,a"") (mod N)
with 1 <a < N/2, or by

p=@R", ..., RY)

with R a random variable in the range 1 to N. The number of p vectors
of the first (‘Korobov’) type is [N/2]. The number of p vectors of the second
(‘random’) type was taken to be Ny(r —1)ifn>2,0r Ny(r -1/2if n=2,
to give the same number of ‘random’ rules searched as in the rank-2 case.
Searches were restricted to 3, 4, 5, 6, 7 and 8 dimensions, with n = 2 or
n =3, and to selected values of N < 131070, with r such that N = n*r and
(n, r)y=1. Higher values of n were excluded after preliminary studies showed
that the results with n = 5 were usually worse, for a given total number of
points N, than those with n = 3 and (especially) n = 2. The restriction to
N < 131070 originates in the architecture of the Cyber 205 computer and the
consequent structure of the programs written to do the searching: the programs
contain vectors of length equal to the number of abscissas in a rule—or more
precisely to half that number, because of symmetry in the functions ¢ defined

in (17). (The maximum vector length in the Cyber 205 is 65535 (= 20— 1).)
Details of the vectorization of the searches are given in the Appendix.
Rules falling in three ‘windows’ of N values were considered, as follows:

(i) 1000-point window with a full search (described in subsection 3.1);
(i) 10000-point window with both full and ‘reduced’ searches (described
in subsection 3.2);
(ii1) 100000-point window with a further reduced search (described in sub-
section 3.3).

The searches were done in the above order. At each stage the results provided
suggestions for reducing the search procedure for the next window, so as to keep
the work required within acceptable limits. The ways in which the searches were
reduced are stated in subsections 3.1, 3.2 and 3.3.
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3.1. 1000-point window. Rules were searched for a number of N values in
the range 948 to 1052, including all the values of N that, for a given », sat-
isfy (n,r) =1 and N = n’r for some r. With n = 2 these are N =
948, 956, 964, ... ,:1052 (i.e., 14 values); with n = 3 these are 954, 963, 981,
990, 1008, 1017, 1035, and 1044 (i.c., 8 values). At each N, rank-1 and rank-
2 rules were searched (in the latter case with n =2 or n = 3, as appropriate),
for both “Korobov’ and ‘random’ vectors p and z, and (in the rank-2 case) for
all of the N, nonequivalent y,,y, pairs. The numbers of rules searched by
this ‘full search’ procedure are as set out in Table 3.

TABLE 3
Numbers of rules searched in the ‘full’ search used
for the 1000=point window.

Type of Rule Number of Rules Searched
n=2 n=3
(1) Rank 2, ‘Korobov’ z SUN, (r= 1N,
vectors
(2) Rank 2, ‘random’ z SUN, (r— 1N,
vectors
(for comparison with (for comparison with
the rank-2 searches the rank-2 searches
with n = 2) with n = 3)
(3) Rank 1, ‘Korobov’ p g i
vectors
(4) Rank 1, ‘random’ p UZUN, (r= N,
vectors

Note that there is a discrepancy between the numbers of rank-1 and rank-2
rules searched, arising from the different numbers of ‘Korobov’ vectors z and
p when the parameter a is allowed its full range in (23) or (24). Consequently,
it is not possible to search exactly the same number of rules.

As we shall see in §4, a striking conclusion from the searches in the 1000-point
window was the overwhelming predominance among the ‘best’ rank-2 rules of
rules with a particular y,, y, pair, namely y, =Y, ,y, =Y,, where

(25) Y,:=(1,0,0,0,...,0), Y,:=(0,1,0,0,...,0),

that is, with all components zero except for those fixed by (9). Whatever may
be the origin of this phenomenon, it immediately suggests an empirical way of
dramatically reducing the time for the rank-2 searches: namely, that instead of
considering all of the N, nonequivalent y, ,y, pairs, one could impose from
the start y, =Y, and y, = Y,. The resulting concept of a ‘reduced search’
(in which the number of rules searched is exactly as in Table 3, but with N
replaced by 1) was central to our consideration of rules in the 10 000-point
window, to keep computer costs within acceptable limits.
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3.2. 10000-point window. To test the validity of the reduced search strategy,
we first considered in detail N = 9972, carrying out the following searches:

(i) rank-2 n =2 full search;
(i1) rank-2 n =2 reduced search,

where a full search is as in Table 3, and a reduced search, as above, refers to
the inclusion of only the pair y, =Y,,y, =Y, . Thus, in a reduced search, N,
in Table 3 is replaced by 1. The results (to be discussed in §4) convinced us to
rely solely on the reduced search strategy in the future.

We then investigated 8 values of N between 9972 and 10764 chosen such
that both » = 2 and n = 3 rank-2 rules exist (requiring N to be a multiple
of 36, and N/36 a multiple of neither 2 nor 3). The N values satisfying these
conditions are 9972, 10116, 10188, 10332, 10404, 10548, 10620, 10764 .
For these we carried out:

(i) rank-2 n =2 reduced search;
(i) comparison rank-1 search;
(iii) rank-2 n = 3 reduced search;
(iv) comparison rank-1 search.

3.3. 100 000-point window. For N =~ 100000 the search procedure was very
expensive and required the full memory resources of Cyber 205, so we further
reduced the searches by choosing even the parameter a in the ‘Korobov’ z
vector at random (following the example of Haber [2] for the rank-1 case). For
N = 100044 we considered:

(i) s =3 to 5, rank-2 n =2 reduced search with ‘random’ and ‘Korobov-
random’ vectors z, with the number of rules of each type searched equal
to r/20;

(i) s =3 to 8, rank-2 n =2 reduced search with ‘random’ and ‘Korobov-
random’ vectors z, with the number of rules of each type searched equal
to r/200.

And for N = 131004 we considered:

(iii) s =7 and 8, rank-2 n = 2 reduced search with ‘random’ and ‘Korobov-
random’ vectors z, with the number of rules of each type searched equal
to r/200.

4. RESULTS OF THE COMPUTER SEARCHES

For each of the searches described in §3, the ‘best’ rules, as judged by P,
and P, separately, are recorded in the microfiche supplement at the end of this
issue.

Here we attempt to give an overall view of the results so obtained, and at
the end select (in Tables 4, 5 and 6) some rules that seem to be particularly
promising.

A first useful observation is that a rule that minimizes P, usually gives a
reasonably small value of P, and vice versa—a fact that is easily understood
from the error expression (20). (For a more complete discussion, see [6].) In
the following we therefore concentrate on the results for P, .
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FIGURE 1
Integration error P, (as defined in (15)) as a function

of the number of integrand evaluations (N or n’ r) in
3 dimensions, for the 1000-point window. Each point
gives the smallest P, value obtained from searches at
fixed V.

The full results also record, in each case, separate ‘best’ results for ‘Korobov’
and ‘random’ vectors z or p. (See subsection 3.1.) In the following, however,
we shall generally quote just the minimum of the two values so obtained.

4.1. The 1000-point window.  Figures 1 to 3 show the minimum values of P,
obtained, for dimensions 3, 5 and 8, for all values of N in the 1000-point
window. The three separate graphs in each case are for the rank-1 case (solid
line), the rank-2 n = 3 case (short dashed line) and the rank-2 n = 2 case
(long dashed line). (The lines are included merely to guide the eye between the
plotted points, and have no other significance.)

For the three-dimensional results in Figure 1 one sees the rank-2 n = 3 rules
performing, on the whole, as well as the rank-1 results, and the rank-2 n = 2
rules performing rather better than either of the others.

Similar conclusions hold in all dimensions; but the apparent superiority of
the rank-2 n = 2 rules becomes much more marked as the dimensionality
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FIGURE 2
Integration error P, (as defined in (15)) as a function

of the number of integrand evaluations (N or nzr) in
5 dimensions, for the 1000-point window. Each point
gives the smallest P, value obtained from searches at
fixed N.

increases: for, in the 5-dimensional and 8-dimensional results of Figures 2 and
3, the graph of the best rank-2 n = 2 rules is very well separated from both of
the others. In no case, in any of the figures, have we found a rank-1 rule that
competes with the best of the rank-2 »n = 2 rules.

Of the rules in Figures 1 to 3, some have z or p vectors of ‘Korobov’ type,
and some have ‘random’ z or p vectors. The honors are about even, with the
proportion of ‘Korobov’ vectors rising slowly (to about 60%) as the dimension
s increases.

A striking (and to us totally unexpected) observation from the complete tab-
ulation of the ‘best’ rules in the 1000-point window is that most of them (for
example, 65% of them when s = 3, and 86% when s = 6) have the particular
Y,, Y, pair given by (25). The bias is particularly striking for the larger values
of s, since the total number N, of possible y,,y, pairs rises rapidly with s
(see Table 2).
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FIGURE 3
Integration error P, (as defined in (15)) as a function

of the number of integrand evaluations (N or nzr) in
8 dimensions, for the 1000-point window. Each point
gives the smallest P, value obtained from searches at
fixed N.

A bias towards the special y,,y, pair given by (25) also persists, though
in less marked form, in the rank-2 n = 3 tabulated results for the 1000-point
window. In this case, about one third of the ‘best’ rules have the special y,, Y,
pair for all dimensions from 3 to 8, compared to a much smaller expected
proportion (see Table 2) if the distribution were statistical.

In summary, the salient features of the results for the 1000-point window
appear to be that the ‘best’ of the rank-2 n = 2 rules consistently perform
better than both the rank-1 and rank-2 » = 3 rules; and that these best rules
have a very strong bias towards the particular y, ,y, pair given by (25).

In Table 4 we have selected, rather subjectively, a subset of rules from the
complete tabulation of rules for the 1000-point window, that seem to us partic-
ularly good as judged by the performance for both P, and F. All, of course,
are rank-2 n = 2 rules, and (with just one exception) all have the special vec-
tor pair y, , y, given by (25). Many of these rules minimize both P, and Py . If
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TABLE 4
A selection of rank-2 rules from the computer searches, in the 1000 - point
window, for 3 to 8 dimensions. All have »n = 2 and, except for the one case
shown otherwise, the special vector pairs y, =Y, ,y, =Y, given by (25).

No. of rules

s i Y2 z r N searched P, Py

3 85173 215 253 1012 504 0.48779E — 02 0.35318E - 10
3 24 69 235 257 1028 512 0.49103E - 02 0.55095E — 10
3 1118 197 259 1036 516 0.49369E — 02 0.88647E — 10
3 1125108 263 1052 524 0.46389E — 02  (0.62585E — 10)
3 1 77143 263 1052 524 (0.47765E — 02)  0.57S11E - 10
4 59 13151219 251 1004 750 0.68468E — 01 0.56933E — 07

4 134 181 44175 255 1020 762 0.68871E — 01 0.52421E - 07

4 1000 O111 1 50169 162 259 1036 774 0.68817E — 01 0.28850E — 07

4 1 50133 75 263 1052 786 0.64661E — 01 0.50868E — 07

5 165 155 50116 31 243 972 968 0.57793E+00  (0.22054E — 04)
5 125 29142 76 12 243 972 968 (0.59426E + 00)  0.1653SE — 04
5 34210 142 39 155 261 1044 1040 0.55351E + 00 0.17458E — 04
5 1 37 84 24117 257 1028 1024 0.53875E + 00 0.12919E - 04
5 1 90210227179 263 1052 1048 0.51525E+00  (0.10321E — 04)
5 1103 89225 31 263 1052 1048 (0.55621E + 00) 0.96425E — 05
6 231 85107 143 5147 243 972 1210 0.35331E + 01 0.12668E — 02

6 61 16 65 76 73226 251 1004 1250 0.34273E + 01 (0.17762E - 02)
6 65 46 116 239179 57 251 1004 1250 (0.34313E + 01) 0.89440E - 03

6 250 92116155 5159 263 1052 1310 0.32123E + 01 0.77498E — 03

6 1 98136178 86 12 263 1052 1310 0.31434E + 01 0.73189E — 03

7 99 38 138 228 106 201 99 243 972 1452 0.16982E + 02 (0.41247E - 0O1)
7 6 24173229 97206 77 243 972 1452 (0.17953E+02)  0.15417E - 01

7 120 178 189 203 141 199 25 257 1028 1536 0.16441E + 02 (0.13001E + 00)
7 147 6120170173 35179 257 1028 1536 (0.16750E + 02)  0.10966E — 01

7 1 32 44183221212 169 245 980 1464 0.17332E + 02 0.90423E - 02

7 1 82 42103222214 72 257 1028 1536 0.16245E + 02 (0.90464E — 02)
7 1 77 18101 67 19178 257 1028 1536 (0.16486E + 02)  0.80419E — 02

8 198 132 75 93201 181 159 174 255 1020 1778 0.75847E + 02 (0.45566E + 00)
8 92 3144 60185141 109 37 255 1020 1778 (0.76042E + 02) 0.22930E + 00

8 90 39112244 12 78 118 156 261 1044 1820 0.72828E + 02 0.25408E + 00

8 1 62 49 2124 98 4248 253 1012 1764 0.75147E + 02 0.24833E + 00

8 1 60181 77 149 261 143 164 263 1052 1834 0.74247E + 02 (0.26772E + 00)
8 1 68153147 2136 43 31 263 1052 1834 (0.74308E + 02) 0.23635E + 00

this is not the case, then we show two different rules for the same values of
s and N, one minimizing P,, and one minimizing P,. (The quantity not
m1n1mlzed by the particular rule is enclosed in parentheses )

The rules in Table 4 in which the z vectors are of the ‘Korobov’ form are
distinguished by the fact that PAR | ; in all other cases, the z-vectors are
‘random’.

Finally, Table 4 allows us to make a useful point about the use of P, as a
search criterion. If we recall that P, is the error in the integration of a functlon
(namely f,) whose exact integral 1s 1, it may seem bizarre in the extreme to
persist with P, when its value is comparable to or greater than 1. Yet, we see
in Table 4 that rules that minimize P, often also minimize P,, which is an
integration error of much more sen31ble size. Thus, the use of P as a criterion
may still be defensible even when its value is large.
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4.2. The 10000-point window. We recall from subsection 3.2 that for the
10000-point window the first step was to carry out both a ‘full’ search and a
‘reduced’ search (i.e., one restricted to the special pair y, =Y,, y, =Y,) for the
rank-2 n = 2 case, the purpose being to assess the effectiveness of the reduced
search strategy.

The full search required in total 2940 cpu seconds on a Cyber 205, compared
with 185 cpu seconds for the reduced search. Yet, in 9 cases out of 12 (counting
separately the P, and P; minimizations, and dimensions from 3 to 8), the two
searches yielded exactly the same result. In the other three cases, the full search
yielded marginally better results, but hardly enough to justify fifteen times the
expense. We therefore resolved to concentrate exclusively on reduced searches.

Adopting the reduced search, rules for a range of N-values between 9972 and
10 764 were searched as described in §3, and the results compared graphically
in a manner similar to the 1000-point window. Again, a comparison of rank-
1 and rank-2 rules was made, and it was found that the rank-2 n = 2 rules
consistently performed better than the others in four to eight dimensions, and
the performance of the rank-2 n = 3 and rank-1 rules were about equal. This
can be seen for the cases of three, five and eight dimensions in Figures 4, 5 and
6. The case of three dimensions, in Figure 4, has all three types of rules giving
roughly equal performance. The superiority of the rank-2 # = 2 rules thus

TABLE 5
A selection of rank-2 rules from the computer searches, in the 10000 - point
window, for 3 to 8 dimensions. All have n = 2 and the special vector pairs
y, =Y,,y,=Y, given by (25).

No. of rules
s oz r N searched P, P
3 11186 2056 2601 10404 1300 0.92970E — 04
3 1026 1597 2113 2637 10548 1318 0.96583E — 04
4 1 4252398 1448 2583 10332 1291 0.21414E — 02 0.17337E - 11
4 1 337 178 1972 2637 10548 1318 0.21490E - 02 (0.15916E — 11)
4 1 473 376 242 2691 10764 1345 0.21399E-02  (0.22879E - 11)
4 1 638 703 1808 2691 10764 1345 (0.21573E - 02)  0.15490E — 11
5 1 721 2531576 334 2547 10188 1273 0.26107E — 01 0.17376E — 08
5 1 961 571 2351690 2637 10548 1318 0.24746E — 01 0.13403E — 08
5 1 988 1759 1522 1006 2655 10620 1327 0.24233E - 01 0.78143E — 09
6 1 1159 1012 1288 250 1939 2547 10188 1273 0.20869E + 00 0.18181E — 06
6 1554 968 1704 1618 989 1163 2583 10332 1291 0.21016E+ 00  (0.44878E — 06)
6 1747 213 901 5521690 699 2583 10332 1291 (0.22026E + 00) 0.44234E — 06
6 1 422 199 1673 2431 1052 2655 10620 1327 0.19951E+00  (0.51608E — 06)
6 1 253 289 1432 1216 2323 2655 10620 1327 (0.20859E + 00)  0.27331E — 06
7 1 758 1138 2465 961 32 1009 2583 10332 1291 0.12749E + 01 (0.23946E — 04)
7 1 514 730 685 802 15311702 2583 10332 1291 (0.12752E + 01) 0.15347E — 04
7 18871679 713 121 257 2522415 2601 10404 1300 0.12471E + 01 0.20018E — 04
7 112112617 1880 94 8121117 2691 10764 1345 0.11802E + 01 0.20949E - 04
8 1 1151 361 350 424 1547 244 674 2547 10188 1273 0.67017E + 01 (0.16587E — 02)
8 1 641 8142186 376 1598 424 1802 2547 10188 1273 (0.67083E + 01) 0.33740E - 03
8 1 8952014 1459 490 808 622 283 2637 10548 1318 0.62780E + 01 (0.87553E ~ 03)
8 1 6202035 1214 1135 2258 2350 1376 2637 10548 1318 (0.63798E + 01)  0.33268E — 03
8 1 831507 12952536 590 532 1100 2691 10764 1345 0.63424E + 01 (0.30119E - 02)
8 1 1199 607 1223 2473 2336 2224 2486 2691 10764 1345 (0.64452E + 01)  0.44928E — 03
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becomes much more marked as the dimensionality increases; and only in three
dimensions, at a high level of convergence, have we found a rank-1 rule that
competes with the best rank-2 rules. Moreover, if the best rank-1 rules have p
vectors of Korobov type, then they have been found by searches of about four
times as many rules as the best rank-2 n = 2 rules, and about nine times as
many as the best rank-2 # = 3 rules. Similar results also hold when the criterion
is P, except that the P, errors obtained with the best rank-2 n = 3 rules are
consistently greater than in the rank-1 case. Table 5 contains a selection of some
of our best rank-2 n = 2 rules which appear useful for practical applications.

TABLE 6
A selection of rank-2 rules from the computer searches, in the 100 000 - point
window, for 3 to 8 dimensions. All have n = 2 and the special vector pairs
Yy, =Y,,y, =Y, given by (25).

No. of rules

s oz r N searched P, Py

3 15348 10173 9373 25011 100044 125 0.22978E — 05

3 7319 23489 7010 25011 100044 1250 0.21899E — 05

3 12962 19594 25011 100044 125&1250 0.23751E - 05

4 8619 4353 6230 7317 25011 100044 125 081738E — 04

4 7317 17161 15361 20189 25011 100044 1250 0.70548E — 04

4 1 5416 20164 10198 25011 100044 125 0.98855E — 04

4 1 3112 528720917 25011 100044 1250 0.61731E — 04

5 5477 3083 3651 6657 22019 25011 100044 125 0.11765E — 02 0.36948E — 12
5 21049 2618 14782 19415 18425 25011 100044 1250 0.11338E—02  (0.35527E - 12)
5 191 21046 5773 23486 18635 25011 100044 1250 (0.12302E—-02)  0.11369E — 12
5 1 4292 13168 17207 19972 25011 100044 125 0.10872E — 02 0.36948E — 12
5 1 6968 6673 2015 9349 25011 100044 1250 0.10633E — 02 0 11369E — 12
6 1361913979 18315 2471 8357 20188 25011 100044 125 0.11447E - 01 0.92854E — 10
6 1 3476 2263 12734 18925 4370 25011 100044 125 0.10697E — 01 0.13260E — 09
7 21555 6000 20758 18301 23971 19852 12294 25011 100044 125 0.92860E — 01 (0.12859E — 06)
7 9552 24926 22900 19119 21046 1864 22864 25011 100044 125 (0.93370E — 01)  0.33851E — 07
7 1 12245 24091 14561 21037 9776 4474 25011 100044 125 0.97294E - 01 (0.16702E — 06)
7 1 9734 9088 23696 5422 4538 3466 25011 100044 125 (0.99940E — 01)  0.64325E — 07
8 14747 13874 19956 21322 20288 5245 19183 10465 25011 100044 125 0.56734E+00  (0.91846E — 05)
8 3212 555517120 4251 18381 3147 4888 9868 25011 100044 125 (0.57631E+00)  0.37302E — 05
8 1 1342 172 5725 4573 9271 1121518919 25011 100044 125 0.54047E+00 (0 93545E — 06)
8 1 5066 3070 20789 20764 19169 17452 22958 25011 100044 125 (0.54125E+00)  0.72957E — 06
7 21684 6551061520557 15184 15457 22297 32751 131004 163 0.65006E — 01 0.15978E — 07
7 1 16200 18184 16867 3760 29164 20503 32751 131004 163 0.67529E — 01 0.15569E — 07
8 18133 732320067 4975 16402 32438 690 25405 32751 131004 163 0.41951E + 00 0.78090E — 06
8 1 8243 21475 32021 8794 10979 8884 32327 32751 131004 163 0.41074E + 00 0.86272E — 06

4.3. The 100 000-point window.  The full details of these searches are given at
the end of §3, and all the rules found in this search are listed in Table 6. This
table contains two rules in each dimension for N = 100044 when the number
of rules searched is 125; and six rules in 3 to 5 dimensions, with the same N,
but with the number of rules searched being 1250. The larger search could not
be continued in 6, 7 and 8 dimensions due to insufficient computer resources.
Table 6 also contains two rules in each of 7 and 8 dimensions for N = 131004 .
(The N = 100044 point rules were considered to give adequate convergence,
in up to 6 dimensions, for most practical applications, so the further effort of
searching N = 131004 was restricted to 7 and 8 dimensions.) The computer
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FIGURE 4
Integration error P, (as defined in (15)) as a function

of the number of integrand evaluations (N or nzr) in
3 dimensions, for the 10 000-point window. Each point
gives the smallest P, value obtained from searches at
fixed N.

cpu time taken for all the N = 100044 results with 125 searches in Table 6 was
1031 seconds; the N = 131004 results for s = 7 and 8 alone took 979 seconds
and required the full memory resources of the Cyber 205 for their attainment.

The quality of the rules in Table 6 may be assessed by comparison with rank-1
rules previously published by Maisonneuve [7] and Haber [2]. The quantity P,

in this work is the same as |R NFSZI of Haber (where s = dimension) and P(z)(g)
of Maisonneuve; this was checked computationally by using some of Haber’s
and Maisonneuve’s rules in the programs used to compute P,. A comparison
between the rank-1 N = 100063 rules in Maisonneuve and our rank-2 n =2,
N = 100044 results from searching 125 rules shows that the latter gives P,

values which are between 47% and 74% of Maisonneuve’s P(Z)(g) values. A
comparison between the rank-1 N = 98304 rules in Haber and our rank-2 n =
2, N =100044, with 125 searched, rules shows that the latter give P, values
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which are between 54% and 78% of Haber’s |R NFSZI rules. These comparisons
illustrate that the rules given in Table 6 offer a considerable advantage over the
previously published rank-1 rules, according to the standard criterion.

5. DiscussioN

Two empirical conclusions emerge clearly from the computer searches re-
ported in this paper. The first is that, by the standard criterion and for di-
mensions greater than 3, the ‘best” of our rank-2 n = 2 rules (i.e., lattice rules
with invariants 2r, 2 and r odd) consistently outperform the best rank-1 rules
obtained with a comparable search effort. This is true whether we look at rules
with around 1000, or 10000 or 100000 abscissas.

The second conclusion is that for the best of the rank-2 n = 2 rules there
is a marked tendency for the vectors y,,y, in (8) to have the special values
Yy, =Y,,y, =Y, given by (25).
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At the present time, no convincing explanation has emerged for either phe-
nomenon.

APPENDIX. PROGRAMMING CONSIDERATIONS

Here we consider only the case of rank-2 rules. The situation for rank-1 rules
is similar, and even easier.
Using (15) and (8), the object is to compute, for a a positive even integer,

r n h
(A1) = S ST (k) -
j=1 k=1 k,=1

with f (x) =[T¢,(x""), and ¢, given by (17).
The function ¢ has the symmetry property

(A2) ¢, (x)=9¢,(1-x),
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leading to
fLx)=/f£(1,1,...,1)=x).

Since the lattice rule (8), like every lattice rule, is symmetric about the center
of the cube, this symmetry may be used to reduce the number of terms needed
in the sum: it can easily be seen that (A1) can be replaced by

n

D) [’/2]* no z y y
(A3) P=-r % ST (kT kg2 1,

=0 k =lk,=1

where the asterisk indicates that the term with j = 0 is to be halved, and if r
is even, also that with j =r/2.

In our searches we evaluated P, for many different rules, all having the same
values of n and r. Now the values of f needed for all rules with given n
and r are products of a quite small set of ¢ values, namely the set

(A4) {¢,(U/nr): 1=0,1,...,nr—1}.

Thus the first step in a search, following an idea of [8], was to calculate an array
of these nr values of ¢ . (The number of ¢ values can be further reduced
by a factor of close to two, by exploiting the symmetry (A2); but this is of no
great consequence.)

For a given rule, our object was to construct a vector, of length nz( [r/2]1+1),
of the values of f occurring in (A3), from which it is a trivial matter to deduce
P . Since

s (1) (1) (1)
Fo(iFere Y e Y2 AR N &
frr<jr+kln+k2n)_].—[l¢ry<{1 r +kl n +k2n })
(AS5) l

s P njz" + rklyﬁi) + rkzyé’)
1=1 " nr ,

(1)

an intermediate step was to create, for each component x'’, a vector of length
nz([r/z] + 1), labelled by j, k,, k,, of the ¢ _ values occurring in (AS), after
which it is an efficient operation on the Cyber 205 to form the vector of f,
values by taking component-by-component products of the s individual vectors.

A final comment concerns the method of formation of the vectors of ¢,
values needed in (A5). For the ith component, the values needed are of the
form ¢ (//nr), where

(A6) /= njz(') + rkly(ll) + rkzyg) (mod nr)

for 0<j<[r/2], 1 <k <n, 1<k, <n. Thus for each component one

first forms an integer vector of length nz([r/ 2]+ 1) by means of (A6), and then
forms the vector of ¢ values from the values already stored (see (A4) above).
The process of forming a vector from a vector of indices of a stored array can



302

be
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efficiently handled on the Cyber 205 by means of a utility, the ‘vector data

motion’ macro Q8VGATHR.
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